Search results for "Night Blindness"

showing 8 items of 8 documents

Further delineation of eye manifestations in homozygous 15q13.3 microdeletions including TRPM1: a differential diagnosis of ceroid lipofuscinosis.

2014

The 15q13.3 heterozygous microdeletion is a fairly common microdeletion syndrome with marked clinical variability and incomplete penetrance. The average size of the deletion, which comprises six genes including CHRNA7, is 1.5 Mb. CHRNA7 has been identified as the gene responsible for the neurological phenotype in this microdeletion syndrome. Only seven patients with a homozygous microdeletion that includes at least CHRNA7, and is inherited from both parents have been described in the literature. The aim of this study was to further describe the distinctive eye manifestations from the analysis in the three French patients diagnosed with the classical 1.5 Mb homozygous microdeletion. Patients…

MalePathologymedicine.medical_specialtygenetic structuresalpha7 Nicotinic Acetylcholine ReceptorEncephalopathyTRPM Cation ChannelsChromosome DisordersBiologyBlindnessEyePupilNeuronal Ceroid-LipofuscinosesNight BlindnessSeizuresIntellectual DisabilityRetinal DystrophiesGeneticsmedicineElectroretinographyMyopiaHumansEye AbnormalitiesChildGenetics (clinical)TRPM1Genetic Association StudiesCongenital stationary night blindnessGeneticsChromosomes Human Pair 15DystrophyEye Diseases HereditaryGenetic Diseases X-LinkedOptic NerveMicrodeletion syndromemedicine.diseasePenetranceChild PreschoolFemalesense organsDifferential diagnosisChromosome DeletionAmerican journal of medical genetics. Part A
researchProduct

Next-generation sequencing confirms the implication ofSLC24A1in autosomal-recessive congenital stationary night blindness

2016

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder which represents rod photoreceptor dysfunction or signal transmission defect from photoreceptors to adjacent bipolar cells. Patients displaying photoreceptor dysfunction show a Riggs-electroretinogram (ERG) while patients with a signal transmission defect show a Schubert–Bornschein ERG. The latter group is subdivided into complete or incomplete (ic) CSNB. Only few CSNB cases with Riggs-ERG and only one family with a disease-causing variant in SLC24A1 have been reported. Whole-exome sequencing (WES) in a previously diagnosed icCSNB patient identified a homozygous nonsense variant in SL…

0301 basic medicineCongenital stationary night blindnessGeneticsRetinal Disordergenetic structuresmedicine.diagnostic_testGenetic heterogeneityBiologyCompound heterozygosityeye diseases03 medical and health sciences030104 developmental biology0302 clinical medicine030221 ophthalmology & optometryGeneticsmedicineMissense mutationsense organsExomeErgGenetics (clinical)ElectroretinographyClinical Genetics
researchProduct

Analysis of the human a-wave ERG component

2006

The a-wave is one of the main issues of research in the field of ocular electrophysiology, since it is strictly connected with early photoreceptoral activities. The present study proposes mathematical methods that analyse this component in human subjects, and supports experimental evidence relating to possible correlations among the responses of photoreceptoral units under a light stimulus. The investigation is organized in two parts: the first part concerns the onset and the initial slope, up to the first minimum (about 10-15 ms), the second part deals with the main portion of the wave, up to about 30 ms. In both cases, the a-waves, recorded at various levels of luminance, have been fitted…

LightPhysiologyBiomedical EngineeringBiophysicsStimulus (physiology)Radiation DosageModels BiologicalLuminanceRetinaNight blindness RetinaPhysiology (medical)ElectroretinographyHumansComputer SimulationPhotoreceptor CellsDiagnosis Computer-AssistedMathematicsDose-Response Relationship Drugbusiness.industryStochastic processPattern recognitionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Artificial intelligencebusinessAlgorithmsPhotic StimulationPhysiological Measurement
researchProduct

Empirical mode decomposition and neural network for the classification of electroretinographic data

2013

The processing of biosignals is increasingly being utilized in ambulatory situations in order to extract significant signals' features that can help in clinical diagnosis. However, this task is hampered by the fact that biomedical signals exhibit a complex behaviour characterized by strong non-linear and non-stationary properties that cannot always be perceived by simple visual examination. New processing methods need be considered. In this context, we propose to apply a signal processing method, based on empirical mode decomposition and artificial neural networks, to analyse electroretinograms, i.e. the retinal response to a light flash, with the aim to detect and classify retinal diseases…

EngineeringAchromatopsiaBiomedical EngineeringContext (language use)Settore FIS/03 - Fisica Della MateriaHilbert–Huang transformRetinal DiseasesNight BlindnessElectroretinographyMyopiamedicineHumansComputer visionCongenital stationary night blindnessSignal processingArtificial neural networkbusiness.industryVisual examinationEye Diseases HereditaryGenetic Diseases X-LinkedSignal Processing Computer-AssistedPattern recognitionmedicine.diseaseSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Computer Science Applicationselectroretinogram empirical mode decomposition artificial neural network Achromatopsia Congenital Stationary Night BlindnessClinical diagnosisNeural Networks ComputerArtificial intelligencebusinessMedical & Biological Engineering & Computing
researchProduct

Functional analysis of Normal and CSNB a-wave ERG component

2009

The features of a-wave of the human electroretinogram are one of the more debated problems in electrophysiology since the a-wave reflects the functional integrity of the two photoreceptoral populations (rods and cones). Although different models concerning the contributions of the early photoreceptoral response are available in current literature, a fully comprehensive theory is difficult to formulate because of the large amount of individual photoreceptors. We study the kinetics of the photoreceptoral response through the analysis of the a-wave shape both in healthy and in patients affected by the Congenital Stationary Night Blindness, that interests the rod population only. The physiologi…

Congenital stationary night blindnessa-waveeducation.field_of_studygenetic structuresPopulationBiologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Congenital Stationary Night blindnessComponent (UML)sense organsSet (psychology)educationphotoreceptoral responseNeuroscienceFunctional analysis (psychology)ErgStatistical functionstatistical functionVisual phototransduction
researchProduct

Next-generation sequencing confirms the implication of SLC24A1 in autosomal-recessive congenital stationary night blindness.

2015

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder which represents rod photoreceptor dysfunction or signal transmission defect from photoreceptors to adjacent bipolar cells. Patients displaying photoreceptor dysfunction show a Riggs-electroretinogram (ERG) while patients with a signal transmission defect show a Schubert-Bornschein ERG. The latter group is subdivided into complete or incomplete (ic) CSNB. Only few CSNB cases with Riggs-ERG and only one family with a disease-causing variant in SLC24A1 have been reported. Whole-exome sequencing (WES) in a previously diagnosed icCSNB patient identified a homozygous nonsense variant in SL…

MaleGenes RecessiveSodium-Calcium ExchangerNight BlindnessElectroretinographyMyopiaHumansExomeGenetic Predisposition to DiseaseAmino Acid SequenceSLC24A1Family HealthHigh-throughput sequencingBase SequenceSequence Homology Amino AcidSettore MED/30 - Malattie Apparato VisivoHomozygoteHigh-Throughput Nucleotide SequencingEye Diseases HereditaryGenetic Diseases X-LinkedPedigreeNight BlindneMutationFemaleCongenital stationary night blindneHumanClinical genetics
researchProduct

Wavelet analysis of human photoreceptoral response

2010

Feature detection of biomedical signals is crucial for deepening our knowledge of the physiological phenomena giving rise to them. To achieve this aim, even if many analytic approaches have been suggested only few are able to deal with signals whose features are time dependent, and to provide useful clinical information. In this work we use the wavelet analysis to extract peculiarities of the early response of the photoreceptoral human system, known as a-wave ERG-component. The analysis of the a-wave features is important since this component reflects the functional integrity of the two populations of photoreceptors, rods and cones whose activation dynamics are not well known. Moreover, in …

Congenital stationary night blindnessAchromatopsiagenetic structuresmedicine.diagnostic_testbusiness.industryWavelet analysis photoreceptoral response Achromatopsia Congenital Stationary Night Blindness.Wavelet transformFeature detection (nervous system)BiologyNeurophysiologymedicine.diseaseSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Time–frequency analysisWaveletmedicineComputer visionsense organsArtificial intelligencebusinessNeuroscienceElectroretinography2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)
researchProduct

A study of the human rod and cone electroretinogram a-wave component

2009

The study of the electrical response of the retina to a luminous stimulus is one of the main fields of research in ocular electrophysiology. The features of the first component (a-wave) of the retinal response reflect the functional integrity of the two populations of photoreceptors: rods and cones. We fit the a-wave for pathological subjects with functions that account for possible mechanisms governing the kinetics of the photoreceptors. The paper extends a previous analysis, carried out for normal subjects, in which both populations are active, to patients affected by two particular diseases that reduce the working populations to only one. The pathologies investigated are Achromatopsia, a…

Statistics and ProbabilityCongenital stationary night blindnessRetinaAchromatopsiagenetic structuresbusiness.industryStatistical and Nonlinear PhysicsRetinalBiologyStimulus (physiology)medicine.diseaseSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)electroretinogram a-wavechemistry.chemical_compoundElectrophysiologyFunctional integrityOpticsmedicine.anatomical_structurechemistrymedicinesense organsStatistics Probability and UncertaintybusinessNeuroscienceVisual phototransduction
researchProduct